object PropositionalFormulae
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- PropositionalFormulae
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def Biimplication[M](f: PropositionalFormula[M], g: PropositionalFormula[M]): PropositionalFormula[M]
- def Implication[M](premise: PropositionalFormula[M], conclusion: PropositionalFormula[M]): PropositionalFormula[M]
- def Nand[M](f: PropositionalFormula[M], g: PropositionalFormula[M]): PropositionalFormula[M]
- def Nor[M](f: PropositionalFormula[M], g: PropositionalFormula[M]): PropositionalFormula[M]
- def Xnor[M](f: PropositionalFormula[M], g: PropositionalFormula[M]): PropositionalFormula[M]
- def Xor[M](f: PropositionalFormula[M], g: PropositionalFormula[M]): PropositionalFormula[M]
-
def
applyDeMorganRule[M](f: PropositionalFormula[M]): PropositionalFormula[M]
applies the rule "not ( f and g ) -> (not f) or (not g) and the according rule resulting by exchaning and and or with the goal to push negations inside
-
def
applyDistributivityLaw[M](f: PropositionalFormula[M]): PropositionalFormula[M]
applies the general distributivity law: (f11 or ...
applies the general distributivity law: (f11 or ... or f1n) and ... and (fm1 or ... or fmn)
(f11 and f21 and ... and fm1) or ... and the according rule when and and or are interchanged
-
def
applyDistributivityLawForAnd[M](f: PropositionalFormula[M]): PropositionalFormula[M]
pushes and inside and fetches or outside
-
def
applyDistributivityLawForOr[M](f: PropositionalFormula[M]): PropositionalFormula[M]
pushes or inside and fetches and outside
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- def cartesianProduct[A, B, C](as: Set[A], bs: Set[B], cs: Set[C]): Set[(A, B, C)]
- def cartesianProduct[A, B](as: Set[A], bs: Set[B]): Set[(A, B)]
-
def
cartesianProduct[T](sets: Set[Set[T]]): Set[Set[T]]
returns the set of those sets which contain exactly one element from each set in the input set.
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
- def flattenSingletonAndsAndOrs[M](f: PropositionalFormula[M]): PropositionalFormula[M]
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def parsePropositionalFormula(string: String): PropositionalFormula[String]
- def removeDoubleNegations[M](f: PropositionalFormula[M]): PropositionalFormula[M]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()